Extension of the interacting quantum atoms (IQA) approach to B3LYP level density functional theory (DFT).

نویسندگان

  • Peter Maxwell
  • Ángel Martín Pendás
  • Paul L A Popelier
چکیده

An interaction between two atoms, bonded or non-bonded, consists of interatomic contributions: electrostatic energy, exchange energy and electronic correlation energy. Together with the intra-atomic energy of an atom, these contributions are the basic components of the Interacting Quantum Atom (IQA) energy decomposition scheme. Here, we investigate IQA's proper use in conjunction with an explicit implementation of the B3LYP functional. The recovery of the total molecular energy from the IQA components is emphasised, for the first time. A systematic study of three model systems of biological relevance, N-methylacetamide (NMA), the doubly capped tripeptide GlyGlyGly and an alloxan dimer, shows the stabilization effect of B3LYP on most of the interatomic exchange energies (V) compared to their Hartree-Fock values. Diagrams of exchange energies versus interatomic distance show the clustering of interactions, one cluster for each 1,n (n = 1 to 6 where the atoms are separated by n - 1 bonds). The positioning of some V values outside their expected cluster marks interesting interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical studies on corrosion inhibition of N-aroyl-N’-aryl thiourea derivatives using conceptual DFT approach

In this paper, quantum chemical parameters at density functional theory (DFT) B3LYP/6-31G** (d,p) level of theory were calculated for three organic corrosion inhibitors [N-benzoyl-N-(p-aminophenyl) thiourea, N-benzoyl-N-(thiazole) thiourea and N-acetyl-N-(dibenzyl) thiourea. The calculated molecular descriptors such as the HOMO, LUMO, dipole moment, chemical potential (μ), chemical hardness (ղ)...

متن کامل

Adenine molecule interacting with golden nanocluster: A dispersion corrected DFT study

The interaction between nanoparticles and biomolecules such as protein andDNA is one of the major instructions of nanobiotechnology research. In this study,we have explored the interaction of adenine nucleic base with a representativegolden cluster (Au13) by using dispersion corrected density functional theory(DFT-D3) within GGA-PBE model of theory. Various active sites ...

متن کامل

A DFT and Molecular Dynamics Study on Inhibitory Action of Three Amine Derivatives on Corrosion of Carbon Steel

Inhibition efficiencies of three amine derivatives (Diethylenetriamine (I), Triethylenetetramine (II), and Pentaethylenehexamine (III)) have been studied on corrosion of carbon steel using density functional theory (DFT) method in gas phase. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), hardness (η), po...

متن کامل

Basis Set Effects in Density Functional Calculations and BSSEcorrected on the Molybdate-Phosphonic acid Complex

In this research, this possibility was investigated the relative stablilty geometry and bindingenergies of the hydrogen bonds of Molybdate-Phosphonic Acid (MPA) complex in gas phase onthe basis of result of ab initio and DFT calculations. Three DFT methods have been applied forcalculations are B3LYP, BP86 and B3PW91 that have been studied in two series of basis sets:D95** and 6-31+G(d,p) for hy...

متن کامل

A DFT study of NMR parameters for MgO nanotubes

Magnesium oxide nanotubes of finite length are investigated by the Density Functional Theory (DFT) at the B3LYP/6-31G (d) level. The (6, 0) zigzag and (4, 4) armchair of MgO nanotubes were considered and nuclear magnetic resonance properties including isotropic and anisotropic chemical shielding parameters (CSI and CSA) were calculated for 25Mg and 17O atoms of the optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 31  شماره 

صفحات  -

تاریخ انتشار 2016